
TRUE OAK RANGE

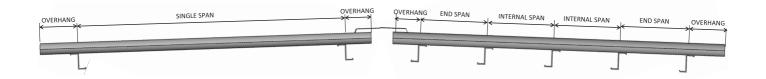
Super 5

OVERVIEW

True Oak Super 5 is a 35mm corrugated profile ideal for roofing and walling applications. It is the perfect blend of classic and modern corrugated design technology.

NON-CYCLONIC SPAN TABLE

ROOF SHEETING NON-CYCLONIC SPAN TABLE


ROOF SPAN	0.48 BMT
Single Span	1200
End Span	1800
Internal Span	2400
Unstiffened Overhang	300
Stiffened Overhang	500

WALL CLADDING NON-CYCLONIC SPAN TABLE

WALL SPAN	0.48 BMT
End Span	2700
Internal Span	2700
Unsupported Cantileaver	400*

* Rivet required, securing the overlap, 50mm from the end of the sheet

SPAN DEFINITIONS

DESIGN PARAMETERS

		Height	10 metre	Internal Bay	End Bay
Region	А	Vz	45 m/sec	K ₁ = 1.0	K ₁ = 2.0
	-	q*u	1.215 kPa	ΣC = -0.85v	ΣC = -1.50
Terrain Category	2	qs	0.821 kPa	Pu = 1.03 kPa	Pu = 1.82 kPa
		Cp.e	-0.65	Ps = 0.70 kPa	Ps = 1.23 kPa
		Ср	0.2		

NON-CYCLONIC SERVICEABILITY & STRENGTH

NON-CYCLONIC TRUE OAK SUPER 5 0.48 BMT

Non-Cyclonic Wind Uplift Resistence - Service and Strength Limit State Design

	End S	Span		Internal Span		
Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	
1200	2.04	6.08	1500	2.06	6.16	
1500	1.66	4.60	1800	1.74	4.88	
1800	1.35	3.66	2100	1.47	4.02	
2100	1.08	3.02	2400	1.24	3.39	
2400	0.86	2.56	2700	1.04	2.92	

INSULATION OPTIONS

Roof Blanket with a thickness up to 100mm can be installed under True Oak Super 5 without the requirement of a thermal spacer, the length of the fasteners may have to increase to compensate for the thickness of the insulation.

Noting the energy efficiency requirements of non-residential buildings may call for a thermal spacer on blanket of all sizes, this is governed by Section J of the National Construction Code.

RevSpec

Maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

CROSS SECTIONAL AREA COMPARISON PER PROFILE

TRUE OAK SUPER 5 RAINFALL CAPACITY

EFFECTIVE CROSS-SECTIONAL AREA (m² / m)				
Corrugated 16mm	1.249 x 10 ⁻³			
True Oak 21mm	2.520 x 10 ⁻³			
True Oak 'Super 5'	6.416 x 10 ⁻³			
Rev 5	11.85 x 10 ⁻³			
Rev 5 Plus	15.29 x 10 ⁻³			
RevKlip 700	13.91 x 10 ⁻³			
RevSpan 700	4.589 x 10 ⁻³			

RAINFALL CAPACITY (mm/hr)						
ROOF SLOPE (DEGREES)	150	200	250	300	350	400
2	57	43	36	30	23	23
3	68	51	41	34	29	26
5	74	63	49	41	37	31
10	110	86	68	57	52	43

RELATIVE DISCHARGE X 10-6m³ / s / m PER PROFILE

SLOPE (DEGREES)	CORRUGATED 16mm	TRUE OAK 21mm	TRUE OAK 'SUPER 5'	REV 5	REV 5 PLUS	REVKLIP 700	REVSPAN 700
1	103.3	286.1	1227.1	4018.5	5932.9	4974.0	1034.3
2	146.1	404.6	1736.2	5682.9	8390.4	7034.3	1462.8
5	231.0	639.8	2754.2	8985.6	13266.5	11122.3	2312.9
10	326.8	904.8	3882.4	12707.5	18761.6	15729.3	3270.9
15	400.2	1108.1	4752.9	15563.5	22978.2	19264.5	4006.0

RAINWATER INTENSITY PER LOCATION

RAINFALL INTENSITY BY LOCATION (mm / hr)						
Average recurrance (years)						
Locality	Once in 20	Once in 100				
AUSTRAL	IAN CAPITAL TE	RRITORY				
Canberra	143	193				
NE	W SOUTH WAL	ES				
Albury	139	180				
Broken Hill	143	219				
Newcastle	226	316				
Sydney	200	262				
NOF		ORY				
Alice Springs	166	239				
Darwin	233	274				
	QUEENSLAND					
Brisbane	234	305				
Cairns	229	278				
Mackay	250	316				
Townsville	235	300				

RAINFALL INTENSITY BY LOCATION (mm / hr)					
Average recurrance (years)					
Locality	Once in 20	Once in 100			
sc	OUTH AUSTRAL	IA			
Adelaide	125	187			
Gawler	110	158			
Mt Gambier	103	144			
Murray Bridge	120	178			
Yorketown	155	166			
	TASMANIA				
Hobart	85	116			
Launceston	90	121			
	VICTORIA				
Ballarat	131	188			
Geelong	102	144			
Melbourne	132	187			
Mildura	142	218			

RAINFALL INTENSITY BY LOCATION
(mm / hr)

(mm / hr)					
Average recurrance (years)					
Locality	Once in 20	Once in 100			
WESTERN AUSTRALIA					
Albany	125	178			
Broome	232	287			
Bunbury	147	199			
Geraldton	138	193			
Perth	130	172			

*Rainwater Intensity Data obtained from the National Construction Code and the Bureau of Meterology.

MASSES

COLORBOND® STEEL AM	100	0		
	-		_	

	0.48 BMT
kg/Im	3.94
kg/m ²	5.36

NEXTEEL[™] AM100

	0.48 BMT
kg/lm	3.94
kg/m²	5.36

HERITAGE GALVANISED

	0.48 BMT
kg/lm	4.39
kg/m²	5.97

ZINCALUME® AM125

	0.48 BMT
kg/Im	3.86
kg/m²	5.25

NEXALUME[™] AZ150

	0.48 BMT
kg/lm	3.86
kg/m²	5.25

VALLEY FASTENER LOCATION

5 fasteners per sheet - End Supports

3 Fasteners per Sheet - Internal Supports

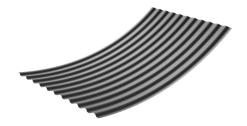
FASTENER SPACING NON-CYCLONIC

As per NCC ABCB Housing Provisions Table 7.2.5, maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

CREST FASTENER LOCATION	
-------------------------	--

```
6 fasteners per sheet - End Supports
```

3 Fasteners per Sheet - Internal Supports


NOTE: Side lap fasteners are optional when using 5 fasteners per sheet, but are a requirement when only using 3 fasteners per sheet for valleys.

SUGGESTED NON-CYCLONIC PIERCE FIXING

SUGGESTED TRUE OAK SUPER 5 NON CYCLONIC PIERCE FIXING **FIXING TO STEEL FIXING TO STEEL FIXING TO METAL** TYPE FIXING TO TIMBER (UP TO 1.9mm) (2.0mm - 3.5mm) BATTENS (0.55 - 1.0mm) Self Drilling 12×55mm Hex Self Drilling 12×55mm Crest Fixed M6-11×65mm Roof Zips M6-11×65mm Roof Zips Head HiGrip w/- Seal Hex Head HiGrip w/- Seal M6-11×25mm or M6-11×25mm or M6-11×25mm Hex Self Drilling 12×55mm Valley Fixed 10-16×16mm Metal Teks Head with Seal or 10-16×16mm Metal Teks Hex Head HiGrip w/- Seal T17×25mm Hex Head Hex Head with Seal Hex Head with Seal

NOTE: After exposure of cladding to extreme wind event, it is recommended that inspection to be performed to confirm cladding integrity.

MECHANICAL CURVING

STANDARD SPECIFICATION

COLORBOND® STEEL AM100

RELEVANT FOR COLORBOND® STEEL, COLORBOND® MATT STEEL PRODUCTS

Steel base thickness (0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® Steel AM100 Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

• SUBSTRATE	Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021
• COATING	AM100 = 100g per m ² Minimum Metallic Coating Mass
• PRIMER	Nominal 5µm Universal Corrosion Inhibitive Primer
• PAINT	Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3
PROTECTIVE PLASTIC	Nominal 50µm CORSTRIP® (if required)

COLORBOND® STEEL AM150

RELEVANT FOR COLORBOND® STEEL ULTRA PRODUCTS

Steel base thickness (0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® AM150 Ultra Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

• SUBSTRATE	Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021
 COATING 	AM150 = 150g per m ² Minimum Metallic Coating Mass
• PRIMER	Nominal 5µm Universal Corrosion Inhibitive Primer
• PAINT	Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3
PROTECTIVE PLASTIC	Nominal 50µm CORSTRIP® (if required)

NEXTEEL[™] AM100

RELEVANT FOR NEXTSTAR[™], NEXTSTAR[™] MATT STEEL PRODUCTS

Steel base thickness (0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL[™] AM100 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

• SUBSTRATE	Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021
• COATING	AM100 = 100g per m ² Minimum Metallic Coating Mass
• PRIMER	Nominal 5µm Polyester
PAINT	Nominal 20 μm Advanced Durability Polyester AS/NZS 2728 Type 4
PROTECTIVE PLASTIC	Nominal 50µm NextSTRIP (if required)

NEXTEEL[™] AM150

RELEVANT FOR NEXTSTAR[™] ULTRA STEEL PRODUCTS

Steel base thickness (0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL[™] AM150 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

 SUBSTRATE 	Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021
• COATING	AM150 = 150g per m ² Minimum Metallic Coating Mass
• PRIMER	Nominal 5µm Polyester
PAINT	Nominal 20µm Advanced Durability Polyester AS/NZS 2728 Type 4
PROTECTIVE PLASTIC	Nominal 50µm NextSTRIP (if required)

True Oak Super 5 can be mechanically curved in the factory, however the following should be noted:

- Cover is 735mm
- Concave and Convex Shapes Only
- Minimum Radius of 2000mm
- Bullnose Curving is not Available

STANDARD SPECIFICATION

ZINCALUME® AM125

Steel base thickness (0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. Zincalume AM125 Substrate compliance AS 1397:2021, 125g per square metre minimum Metallic Coating Mass.

•	SUBSTRATE	Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021
•	COATING	AM125 = 125g per m ² Minimum Metallic Coating Mass

NEXALUME[™] AZ150

Steel base thickness (0.48) with a Hot-Dipped Aluminium Zinc Magnesium Alloy Coating. Nexalume AZ150 Substrate compliance AS 1397:2021, 150g per square metre minimum Metallic Coating Mass.

 SUBSTRATE 	Hot-Dipped Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021
• COATING	AZ150 = 150g per m ² Minimum Metallic Coating Mass

MARINE CLASSIFICATION

- Class 1 (ISO 9223 Category C1): Rural areas far inland and remote from marine or industrial influence
- Class 2 (ISO 9223 Category C2): Inland areas remote from the coast or areas of pollution
- Class 3 (ISO 9223 Category C3): Coastal areas with low salinity
- Class 4 (ISO 9223 Category C4): Severe marine which begins between 100m 400m from breaking surf or 100m from calm marine.
- Class 5 (ISO 9223 Category C5): Very severe marine: Close to breaking surf, typically 0 to 100m from breaking surf/exposed marine.
- Class CX: Extreme (as per AS 4312:2019): Rare classification, reserved for offshore structures and the most severe sea conditions

ISO 9223:2012

Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation.